InService

Goltens Worldwide Newsletter | Issue 01.2013

Minimizing Asset Downtime

The Value of an Independent Opinion and Approach

Goltens salvages condemned MAN crankshaft for Containership

Goltens secures worldwide approval for annealing from Germanischer Lloyd

Long term R&D pays off as Goltens pushes annealing into the main stream

Goltens helps paradise stay paradise

Goltens completes challenging crankshaft replacement for Royal Caribbean Cruises with no impact to ship's schedule

Goltens helps

Tight timeline met on Offshore BWT retrofit

3D scanning, detailed engineering and prefabrication of retrofit kit helps offshore operator meet tight timelines

Goltens completes challenging crankshaft replacement for Royal Caribbean Cruises with no impact to ship's schedule
InService 01.2013

Measuring the value of something you can’t see

Downtime. It may be inevitable, but it negatively affects every one of our customers in significant ways— from operations hurdles to decreased profitability to reduced peace of mind. So we’ve been working hard to improve our resources. Goltens prides itself on minimizing these downtimes for our customers by providing innovative technical solutions in a responsive manner with the emphasis on prolonging the lifetime of an asset in a safe manner.

Downtime affects different stakeholders in different ways. For the ship owner, the bottom line is the end customer – a consumer of the power generated by the plant. When there is a failure, there is potential lost revenue. For the vessel owner, it is simply the highest ranking recovery time. For the repair provider and service company, our focus is on devising solutions to restore from casualty results, no one is better positioned than Goltens to do this. The sole purpose of our in-situ machining capabilities is to cut recovery times in real time and to limit downtime and restore operations ASAP.

At Goltens, we pride ourselves on minimizing asset downtime for our customers. The historical lack of acceptance of annealing crankshafts in the marine sector was a result in millions of dollars in unnecessary downtime, repairs and crankshaft purchases. The AnSwer iS obvIous: Shankshafts & crANKShafts

Goltens secures worldwide approval from Germanischer Lloyd for in-situ crankshaft annealing

After years of research and development and successful shop and field trials on the annealing of crankshafts, Goltens received worldwide approval for its repair process from Germanischer Lloyd (GL) in September 2012. This certification covers the in-situ annealing of medium-speed, four-stroke diesel engine crankshafts and represents a formal review by Germanischer Lloyd of the crankshaft annealing process and related governing documents and procedures.

Savings ConCemed crANKshafts

The approved process reduces hardness in targeted, strategic locations of a level equaling conventional annealing (heat treatment) of the crankshaft. The process is specifically targeted at repairing crankshafts that would otherwise be condemned and require replacement due to the severity of the hardness exceeding engine maker specifications.

After achieving many reusability con- demand crankshafts, Goltens boast cleaner in-situ downtime, lower customers and insurers money, and shorter repair time.

Shop trial wins Senegal annealing job with Mitsubishi

Goltens was already familiar with the engines of a stationary power plant in Rufisque in western Senegal when Mitsuioship decided to inspect one of the nine Mitsubishi 18KU30B generators in its fleet. A shop trial swelled Goltens before it could begin annealing.

Goltens had previously successfully performed in-situ machining at the plant and was very familiar with the engines. In preparation for the in-situ machining, Goltens kept their equipment running in optimal levels for as long as possible. Goltens then proceeded to Mitsubishi to arrange and machine the crank- shaft to salvage the shaft within the stipulated time.

Demonstration of annealing process

To evaluate the effectiveness of annealing, Mitsubishi invited Goltens to demonstrate its in-situ annealing process on a crankshaft that had been inadvertently heated to the annealing temperature in its factory in Yokohama, Japan. Goltens technical managers to the factory and, following its QA-approved process, demonstrated the effectiveness of in-situ annealing to Mitsubishi.

After the successful shop trial, Goltens was awarded the damaged crankpin and mobilized its annealing equipment and in-situ machining teams to Senegal to conduct the work. Goltens undertook all of the engine preparation required by its process, including the repairs that allow for any damage to the engine casing from linear expansion of the crankshaft and machining the crankshaft surface free of cracks. The technicians then connected the annealing equipment and performed the hot treatment of the crank.

After annealing, Goltens took core samples and the results were accepted by Mitsubishi. The crankpin was then machined and polished to a finish diameter of Goltens removing only 0.1mm from the shaft diameter.

The technical know-how of annealing crankshafts is a marine sector and for us, the world-class platform provided by Germanischer Lloyd has made it possible to enter the marine sector with the aim to provide customers with our ability to enter the scene with the aim to provide customers with our ability to provide customers with the breadth of specialist services with world-class expertise.

Across all of our business areas we focus on providing our customers with the breadth of specialist services with world-class expertise. From in-situ machining to in-situ annealing, we provide our customers with access to our expert afloat diesel teams and repair providers to face these challenges.

We’re constantly expanding the range of services we are offering to our customers.

In the business, every sale is another margin: To evaluate the effectiveness of annealing, Mitsubishi invited Goltens to demonstrate its in-situ annealing process on a crankshaft that had been inadvertently heated to the annealing temperature in its factory in Yokohama, Japan. Goltens technical managers to the factory and, following its QA-approved process, demonstrated the effectiveness of in-situ annealing to Mitsubishi.

Shop trial wins Senegal annealing job with Mitsubishi

Goltens was already familiar with the engines of a stationary power plant in Rufisque in western Senegal when Mitsuioship decided to inspect one of the nine Mitsubishi 18KU30B generators in its fleet. A shop trial swelled Goltens before it could begin annealing.

Goltens had previously successfully performed in-situ machining at the plant and was very familiar with the engines. In preparation for the in-situ machining, Goltens kept their equipment running in optimal levels for as long as possible. Goltens then proceeded to Mitsubishi to arrange and machine the crankshaft to salvage the shaft within the stipulated time.

Demonstration of annealing process

To evaluate the effectiveness of annealing, Mitsubishi invited Goltens to demonstrate its in-situ annealing process on a crankshaft that had been inadvertently heated to the annealing temperature in its factory in Yokohama, Japan. Goltens technical managers to the factory and, following its QA-approved process, demonstrated the effectiveness of in-situ annealing to Mitsubishi.

After the successful shop trial, Goltens was awarded the damaged crankpin and mobilized its annealing equipment and in-situ machining teams to Senegal to conduct the work. Goltens undertook all of the engine preparation required by its process, including the repairs that allow for any damage to the engine casing from linear expansion of the crankshaft and machining the crankshaft surface free of cracks. The technicians then connected the annealing equipment and performed the hot treatment of the crank.

After annealing, Goltens took core samples and the results were accepted by Mitsubishi. The crankpin was then machined and polished to a finish diameter of Goltens removing only 0.1mm from the shaft diameter.

The technical know-how of annealing crankshafts is a marine sector and for us, the world-class platform provided by Germanischer Lloyd has made it possible to enter the marine sector with the aim to provide customers with our ability to enter the scene with the aim to provide customers with our ability to provide customers with the breadth of specialist services with world-class expertise.

Across all of our business areas we focus on providing our customers with the breadth of specialist services with world-class expertise. From in-situ machining to in-situ annealing, we provide our customers with access to our expert afloat diesel teams and repair providers to face these challenges.

We’re constantly expanding the range of services we are offering to our customers.

In the business, every sale is another margin: To evaluate the effectiveness of annealing, Mitsubishi invited Goltens to demonstrate its in-situ annealing process on a crankshaft that had been inadvertently heated to the annealing temperature in its factory in Yokohama, Japan. Goltens technical managers to the factory and, following its QA-approved process, demonstrated the effectiveness of in-situ annealing to Mitsubishi.

Shop trial wins Senegal annealing job with Mitsubishi

Goltens was already familiar with the engines of a stationary power plant in Rufisque in western Senegal when Mitsuioship decided to inspect one of the nine Mitsubishi 18KU30B generators in its fleet. A shop trial swelled Goltens before it could begin annealing.

Goltens had previously successfully performed in-situ machining at the plant and was very familiar with the engines. In preparation for the in-situ machining, Goltens kept their equipment running in optimal levels for as long as possible. Goltens then proceeded to Mitsubishi to arrange and machine the crankshaft to salvage the shaft within the stipulated time.

Demonstration of annealing process

To evaluate the effectiveness of annealing, Mitsubishi invited Goltens to demonstrate its in-situ annealing process on a crankshaft that had been inadvertently heated to the annealing temperature in its factory in Yokohama, Japan. Goltens technical managers to the factory and, following its QA-approved process, demonstrated the effectiveness of in-situ annealing to Mitsubishi.

After the successful shop trial, Goltens was awarded the damaged crankpin and mobilized its annealing equipment and in-situ machining teams to Senegal to conduct the work. Goltens undertook all of the engine preparation required by its process, including the repairs that allow for any damage to the engine casing from linear expansion of the crankshaft and machining the crankshaft surface free of cracks. The technicians then connected the annealing equipment and performed the hot treatment of the crank.

After annealing, Goltens took core samples and the results were accepted by Mitsubishi. The crankpin was then machined and polished to a finish diameter of Goltens removing only 0.1mm from the shaft diameter.

The technical know-how of annealing crankshafts is a marine sector and for us, the world-class platform provided by Germanischer Lloyd has made it possible to enter the marine sector with the aim to provide customers with our ability to enter the scene with the aim to provide customers with our ability to provide customers with the breadth of specialist services with world-class expertise.

Across all of our business areas we focus on providing our customers with the breadth of specialist services with world-class expertise. From in-situ machining to in-situ annealing, we provide our customers with access to our expert afloat diesel teams and repair providers to face these challenges.

We’re constantly expanding the range of services we are offering to our customers.

In the business, every sale is another margin: To evaluate the effectiveness of annealing, Mitsubishi invited Goltens to demonstrate its in-situ annealing process on a crankshaft that had been inadvertently heated to the annealing temperature in its factory in Yokohama, Japan. Goltens technical managers to the factory and, following its QA-approved process, demonstrated the effectiveness of in-situ annealing to Mitsubishi.

Shop trial wins Senegal annealing job with Mitsubishi

Goltens was already familiar with the engines of a stationary power plant in Rufisque in western Senegal when Mitsuioship decided to inspect one of the nine Mitsubishi 18KU30B generators in its fleet. A shop trial swelled Goltens before it could begin annealing.

Goltens had previously successfully performed in-situ machining at the plant and was very familiar with the engines. In preparation for the in-situ machining, Goltens kept their equipment running in optimal levels for as long as possible. Goltens then proceeded to Mitsubishi to arrange and machine the crankshaft to salvage the shaft within the stipulated time.

Demonstration of annealing process

To evaluate the effectiveness of annealing, Mitsubishi invited Goltens to demonstrate its in-situ annealing process on a crankshaft that had been inadvertently heated to the annealing temperature in its factory in Yokohama, Japan. Goltens technical managers to the factory and, following its QA-approved process, demonstrated the effectiveness of in-situ annealing to Mitsubishi.

After the successful shop trial, Goltens was awarded the damaged crankpin and mobilized its annealing equipment and in-situ machining teams to Senegal to conduct the work. Goltens undertook all of the engine preparation required by its process, including the repairs that allow for any damage to the engine casing from linear expansion of the crankshaft and machining the crankshaft surface free of cracks. The technicians then connected the annealing equipment and performed the hot treatment of the crank.

After annealing, Goltens took core samples and the results were accepted by Mitsubishi. The crankpin was then machined and polished to a finish diameter of Goltens removing only 0.1mm from the shaft diameter.

The technical know-how of annealing crankshafts is a marine sector and for us, the world-class platform provided by Germanischer Lloyd has made it possible to enter the marine sector with the aim to provide customers with our ability to enter the scene with the aim to provide customers with our ability to provide customers with the breadth of specialist services with world-class expertise.

Across all of our business areas we focus on providing our customers with the breadth of specialist services with world-class expertise. From in-situ machining to in-situ annealing, we provide our customers with access to our expert afloat diesel teams and repair providers to face these challenges.
The value of an independent opinion and approach

The application of Goltens’ GL-approved annealing process salvages a condemned crankshaft for a containership in Turkey avoiding an unnecessary main engine crankshaft replacement.

Goltens was called upon to inspect a crankshaft badly damaged by a bearing failure on the containership’s MAN SL48/60 main engine. The company inspected the 415mm-diameter journal, performing magneto and hardness tests, and checking the run out on the shaft. Measurement results showed that the shaft was 0.11mm versus a maximum of 0.09mm as allowed by MAN. Hardness values were also as high as 700 Brinell, which was well beyond the maker’s limits.

Local grinding was also performed, and it was determined that the cracks did not penetrate below the 0.3mm anode – the smallest diameter for which standard undersized bearings were available. Goltens informed the owner that it believed the crankshaft could be saved at -5mm – despite the surface cracking, slight bend and excessive hardness resulting from the casualty – via annealing and peening of the shaft. Goltens’ independent opinion confirmed the previous findings. However, since MAN does not approve of annealing and peening to reduce hardness and straighten its crankshafts, the shaft was condemned by the maker.

The DECISION

At that point Goltens was instructed to machine the crankshaft to -4mm and to evaluate the condition of the shaft. It was determined that the hard spots did not exist – in fact, they became worse. All of the surface cracks were removed, with the exception of a few that could be locally ground and not exceed the 0.3mm target. Goltens was now confident that they could salvage the crankshaft at -5mm.

Due to the excessive hardness on the journal and the requirements to save the shaft to straighten it, Lloyd (GL) gave approval for a slight modification to the GL-approved process. The owner then gave Goltens the order to proceed with the annealing and peening of the shaft to restore it to the required tolerances. The process modification helped improve the effectiveness of the annealing procedure, which would be key in reaching the 350 Brinell upper limit set by the maker. The application of Goltens’ GL-approved annealing and straightening helped improve the effectiveness of the annealing procedure, which would be key in reaching the 350 Brinell upper limit set by the maker.

The REPAIR

Goltens mobilized its annealing equipment while the repaire was being carried out. To undertake a cost and time consuming crankshaft replacement was now considered by all parties. Goltens worked closely with Germanischer Lloyd to develop a GL-approved process. The owner then believed the crankshaft could be saved at -5mm with the GL-approved process. The owner then gave Goltens the order to proceed with the annealing and peening of the shaft to restore it to the required tolerances. The process modification helped improve the effectiveness of the annealing procedure, which would be key in reaching the 350 Brinell upper limit set by the maker.

No EXPENSE

Due to the excessive hardness on the journal and the requirements to save the shaft to straighten it, Lloyd (GL) gave approval for a slight modification to the GL-approved process. The owner then gave Goltens the order to proceed with the annealing and peening of the shaft to restore it to the required tolerances. The process modification helped improve the effectiveness of the annealing procedure, which would be key in reaching the 350 Brinell upper limit set by the maker.

Full disassembly of engine to remove pistons
- Disassembly of adjacent main bearings and other vulnerable components were removed prior to starting the process.
- Engine optested and restored to operation
- Laser alignment and checking of engine in most cases
- No lengthy downtime
- No large expense
- Transport of new crankshaft to engine location
- Long testing periods when new crankshaft is fitted
Hydropower 2.0

The basic techniques used in hydropower maintenance and repair services are no mystery to Goltens’ global network of maintenance and repair services. When a power plant is shut down, it is often because something needs to be replaced or repaired. The repairs can be relatively small or very large, from replacing a single bearing to a complete overhaul of a power plant. Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Oslo has ramped up its investments in tooling and skilled hydropower equipment maintenance personnel accordingly. The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

AdjusTmenTs To The one-thousandth of a millimeter

The basic techniques used in hydropower maintenance and repair services are no mystery to Goltens’ global network of maintenance and repair services. When a power plant is shut down, it is often because something needs to be replaced or repaired. The repairs can be relatively small or very large, from replacing a single bearing to a complete overhaul of a power plant. Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

Given the massive hydropower infrastructure investments in Norway in recent years, Goltens now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.

But these investments have not come without challenges. The challenges don’t stop there, however. In close cooperation with some of the biggest names in generators and turbines, Goltens plays a key role in maintaining hydropower shafts, bearings and a range of parts connecting turbine to generator.

The workshop now has a range of equipment to serve clients all over Norway. This includes a 2,200-mm diameter milling machine. It’s so large, in fact, that it arrived through the roof of the Oslo workshop.
Goltens Green Technologies goes global

As the world’s shipowners wrestle with the decision on how and when to press forward with investments in ballast water treatment systems, Goltens Green Technologies is demonstrating its capability to support customers around the globe.

The U.S. ballast water regulations that went into effect in June 2013 certainly increased the sense of urgency for many owners with vessels calling the United States. Coupled with the almost inevitable ratification of the IMO treaty on ballast water treatment, this has created a landscape where some must comply and others are still wrestling with compliance preparations.

Responding to requirements from prospective shipowners around the world, Goltens Green has expanded its capabilities from its original Green Technologies center in Groningen, The Netherlands, to include facilities within the United States, Norway, Singapore, China and the Middle East. Additionally, Goltens Green Technologies has established a steering committee and technical teams throughout these regions to make certain that the methodology and approach are formalized and standardized—ensuring a consistent quality delivery anywhere in the world.

THOUGHT LEADERSHIP & OWNER RECOMMENDATIONS

Goltens Green Technologies continues to be at the forefront of the ballast water treatment discussion, and is a sought-after and active participant in user groups and conferences around the world.

In the last year alone, Goltens Green has spoken at:
- INN conference Rotterdam January
- ISO conference, Nashville, Tennessee
- Offshore2013 conference, Copenhagen February
- Inmarsat Ballast Water Technology Conference, London, February
- BIMCO North America in Miami October
- Ballast Water Treatment Technology Conference, Houston, November
- Green Shipping Technology Conference, Hamburg (March 2013)
- BCTC (Ballast Control Technologies Conference) Singapore (April 2013)

Through these speaking engagements, Goltens Green has found many owners eager to learn about its retrofit approach. Large fleet owners are especially concerned with the logistical and financial challenges of getting their vessels ready in time. “Although some agreements with Goltens for scanning, design and retrofit services have been signed recently, Goltens now has an order book with over 70 retrofits in installations—ranging from initial site surveys to turn-key installations during normal operation of the vessel.”

Planning ahead

As Saga shows, it pay to plan ahead. Goltens Green Technologies confirms that it’s all in the planning, as Saga (owned by the Norwegian company, Bjørhovde) shows forward. “If shipowners make a fleet management decision now, they can plan for the future. If you retro-fit today you’ll be able to meet the new requirements in 2015. If you take the right steps now you can avoid additional dry docking periods, spread that investment, and beat the bottleneck set to arise after the BWT convention comes into force,” says Saga Shipping...

BWT System-retrofits.

Saga Shipping— the open hatch carrier subsidiary of Nippon Yusen Kaisha (NYK)—has anticipated the arrival of the treatment convention set to arise after the IMO’s 2015 deadline for ballast water and has planned accordingly. Goltens Green Technologies was one of the bidders in 2010 through 2012 in which they evaluated the ballast water treatment system types available—mechanical, chemical and ultraviolet disinfection,” says Saga Shipping Technical Manager Nils Otto Bjørhovde. “We found that the ultraviolet system made the most sense for us. From there, we chose three suppliers to take part in a tender process, and Optimarin—coming out winning the contract to retrofit all of our vessels.”

TIME OF THE ESSENCE

The contract to complete BWT systems—young investigators engineering and service agreements for 24 sophisticated open-ocean tankers. It also built in an important element: time.

“We will carry out the first retrofitting of one of our vessels in China in mid-May,” said Saga’s Recruit. “Our plan of action is to retrofit all of our vessels with BWT systems from now through 2015.”

The first vessel is not a dry docking due to BWT installation. Saga has the advantage of having a plan to reuse all vessels—such as the Ragnarretta. “The Ragnarretta concludes. |||

Onboard survey and a 3D laser scanning

Pre-engineering

Detailed design

Purchasing & prefabrication

Installation supervision

Systems installation

Type of vessel

Plan & Size of system (purity)
3D Laser Scanning & System Modeling Detailed Engineering Design Purchasing & prefabrication Installation supervision Systems installation

Carrier

Carrie
Stationary power plant assistance. Anytime, anywhere.

Dealing with engine maintenance and unexpected casualties is hard enough, but when the repair personnel are far away and there is no local repair capacity, the challenges become even greater. Thankfully, this is where Goltens comes in.

Stationary power plant operators around the world are faced with challenges shipowners focus over the past decade, it has found these customers very receptive to its innovations. One of the most interesting that Goltens has been able to pursue is providing a turnkey, time-sensitive casualty response service that not only gets the engine back up and running but also takes care of the lengthy and cumbersome repair procedures that are not required prior to annealing. Goltens installed the annealing equipment, a damaged MaK 16cM32 engine.

When Goltens signed a service agreement with Independent Power Tanzania (IPTL) for the overhaul of 10 Maritsa 16V32 engines, the main challenge was to carry out the extensive 35,000-hour overhaul scope within the timeline committed to the client.

The Tanzania plant had a limited window available for the completion of the major overhaul, and the engine was returned to operation.

In-demand in Indonesia

An independent power producer in Ahsch, Indonesia entrusted Goltens to carry out general overhaul of seven genset units in serial fashion. This job needed to be done quickly and accurately, as electricity production could not be disrupted to avoid a shortage of supply to the public grid.

Prior to the job execution, one diesel engine was selected to ensure the completeness of scope parts and check the initial performance of the generator. Goltens then carried out repairs which included a general overhaul of the diesel engines per the maker’s guidelines, reconditioning of the turbochargers, overhaul and recalibration of the speed governors, overhaul of engine components, reconditioning and refurbishment of fuel injection pumps and injectors, and other related parts. Mission was to ensure that the engine is capable of meeting the customer’s engine commissioning and reliability testing, among other requirements.

Goltens completed the job within the agreed time frame — eight days per engine — not exceeding a total of 80 days for seven units. Seamless coordination between the diesel service team at the site and Goltens’ workshops and the client’s key personnel resulted in a job that was recognized and appreciated by the customer.

Major overhauls of generators in Tanzania

When Goltens signed a service agreement with Independent Power Tanzania (IPTL) for the overhaul of 10 Maritsa 16V32 engines, the main challenge was to carry out the extensive 35,000-hour overhaul scope within the timeline committed to the client.

The Tanzania plant had a limited window available for the completion of the major overhaul. To accomplish this, Goltens mobilized its annealing equipment, in-situ machining of damaged crankshaft on second engine, and machining of damaged crankpin after bearing failure.

In the end, Goltens completed the overhaul within the agreed time frame and fulfilled full operational load testing of the engines prior to handing it back over to IPTL for return to operation.

In demand in Indonesia

An independent power producer in Ahsch, Indonesia entrusted Goltens to carry out general overhaul of seven genset units in serial fashion. This job needed to be done quickly and accurately, as electricity production could not be disrupted to avoid a shortage of supply to the public grid.

Prior to the job execution, one diesel engine was selected to ensure the completeness of scope parts and check the initial performance of the generator. Goltens then carried out repairs which included a general overhaul of the diesel engines per the maker’s guidelines, reconditioning of the turbochargers, overhaul and recalibration of the speed governors, overhaul of engine components, reconditioning and refurbishment of fuel injection pumps and injectors, and other related parts. Mission was to ensure that the engine is capable of meeting the customer's engine commissioning and reliability testing, among other requirements.

Goltens completed the job within the agreed time frame — eight days per engine — not exceeding a total of 80 days for seven units. Seamless coordination between the diesel service team at the site and Goltens' workshops and the client's key personnel resulted in a job that was recognized and appreciated by the customer.

Helping hand to Nicaraguan power plant

When the company that began the job was unable to effectively mobilize its equipment and technicians to remove the high hardness discovered in the crankpin, Goltens received the call from CENGA in Nicaragua to take over the repair of a damaged MA60 engine.

Goltens mobilized its annealing equipment, single-point cutting tools and in-eco machining to take on the task and took over the job.

As the crankpin had already been machined down to 275mm, pre-machining was not required prior to annealing. Goltens verified that the crankpin was free of surface cracks and produced a harden mapping of the crankpin. Hardness values 550Hv (hardness Brinell) were discovered in spots around the crankpin surface, well above the manufacturer’s acceptable limits.

As such, these operators are exposed to all, let alone specialist service, available in these remote mines and factories as well as remote areas. As such, these operators are exposed to all, let alone specialist service, available in these remote mines and factories as well as remote areas. These power plants tend to be far away from the main power grid, and serve as critical sources of electrical power for production at local factories, mines, and farms. It’s here where Goltens comes in.

When the company that began the job was unable to effectively mobilize its equipment and technicians to remove the high hardness discovered in the crankpin, Goltens received the call from CENGA in Nicaragua to take over the repair of a damaged MA60 engine.

Goltens mobilized its annealing equipment, single-point cutting tools and in-eco machining to take on the task and took over the job.

As the crankpin had already been machined down to 275mm, pre-machining was not required prior to annealing. Goltens verified that the crankpin was free of surface cracks and produced a harden mapping of the crankpin. Hardness values 550Hv (hardness Brinell) were discovered in spots around the crankpin surface, well above the manufacturer’s acceptable limits.

As such, these operators are exposed to all, let alone specialist service, available in these remote mines and factories as well as remote areas. These power plants tend to be far away from the main power grid, and serve as critical sources of electrical power for production at local factories, mines, and farms. It’s here where Goltens comes in.

When the company that began the job was unable to effectively mobilize its equipment and technicians to remove the high hardness discovered in the crankpin, Goltens received the call from CENGA in Nicaragua to take over the repair of a damaged MA60 engine.

Goltens mobilized its annealing equipment, single-point cutting tools and in-eco machining to take on the task and took over the job.

As the crankpin had already been machined down to 275mm, pre-machining was not required prior to annealing. Goltens verified that the crankpin was free of surface cracks and produced a harden mapping of the crankpin. Hardness values 550Hv (hardness Brinell) were discovered in spots around the crankpin surface, well above the manufacturer’s acceptable limits.

As such, these operators are exposed to all, let alone specialist service, available in these remote mines and factories as well as remote areas. These power plants tend to be far away from the main power grid, and serve as critical sources of electrical power for production at local factories, mines, and farms. It’s here where Goltens comes in.
Minimizing offshore sector downtime – where time truly is money

Preparing Energy Exercter for Black Sea relocation

In December 2013 Prime Point Holdings of Singapore awarded Goltens the order for the inspection, complete overhaul, developmental testing and preservation of three 2500kVA Wartsila 12V12M2 diesel generator sets, two 750kVA Bomull 1TP15 diesel generator set, two 6-cylinder Caterpillar 3406C diesel engine engines, two 12-cylinder Caterpillar 3412C diesel engine engines, and one 12-cylinder Caterpillar 3516B diesel engine engine. The order, which involved the Energy Exercter, a 31-year-old autho- rized conversion jack-up rig.

In addition to the complete refitment of the onboard generators, the Energy Exercter project scope being undertaken by the yard was huge. The rig was disassembled into eight separate pieces and prepared for shipment to Burgas, Bulgaria and reassembly in the Black Sea later on. The ships are total of 7.5 km of welding will need to be carried out to reassembly the parts into a well-functioning rig again.

CLOSE COORDINATION ON ENGINES
As the right power requirements would already available shore power at times, Goltens coordi- nated closely with the customer and had to be ready to minimize any delays and ensure that they were brought back into service as required. Goltens performed inspections of all engines and decided and overhauled all components prior to reassembly. Parts were either over- hauled on-site or transported to Goltens’ nearby workshop in Rotterdam for overhauling. Additional, Goltens in-situ machinists polished all crankpins and main journals as part of the overhaul and rebuild process.

Minimizing downtime with offshore in-situ machining

Goltens’ global reach and ability to respond makes it the clear choice for in- situ machining services when equipment is down and production is on the line.

With the help of a few supporting factors, the company can move quickly to inspect, complete overhaul, developmental testing and preservation of any type of offshore machinery, including diesel engines, propulsion systems, auxiliary systems, safety systems, etc.

DAY RATE IN USD FOR VARIOUS VESSEL TYPES AND OFFSHORE SEGMENTS (2010-2013)

DEEPWATER, HIGH SPEC

PANAMAX

HANDYSIZE CONTAINER, 3000 TEU

US$ 100,000

US$ 300,000

US$ 400,000

US$ 500,000

CONTAINER, 1000 TEU

US$ 0

Critical In-Situ Machining solutions keep new-build offshore vessels on schedule

During the trial construction and commissioning of wind carrier vessel Bold Tern in the Lam- berts Chair in Jebel Ali, vessel owners First Ocean installed the jacking cylinders for the legs. The legs were being damaged during actuation by the scraper ring. To avoid removing the legs, the yard were installed a split frame technical cutting machine onto the jacking cylinder and welded the split point nearly degrees and installed modified legging. Goltens removed a small section of the hydraulic joint body to allow the scraper ring to be removed without any for the hydraulic joint body. The legs were placed back into the normal running condition.

Goltens restores major crankshaft damage to offshore vessel in South America

Goltens has introduced new techniques to inspect and repair a 9L446C engine offshore vessel in South America. The vessel had experienced a serious damage in dam- aging the kits of the main journal and main journals and restore the offshore vessel's engine service in the minimum amount of time.
Tight timeline met on Offshore BWT retrofit

A major subsea and oil and gas company gave Goltens an advanced 3D laser scanning, engineering design and associated project in December 2012 to deliver the prefabricated piping needed to retrofit a Ballast Water Treatment (BWT) system onboard a vessel during its drydock, and therefore meet the scheduled drydock in January 2013, time was of the absolute essence.

An advanced plan-laying vessel was to have an Optimarin OBS 500 m³/hr ballast water treatment (BWT) system installed during its drydock, and therefore needed all scanning, design and prefabrication completed ahead of time.

Goltens Green Technologies experts joined the vessel in Invergordon, Scotland on December 4 to complete the one-day scanning of the engine room spaces where the system was to be installed. They also followed the complete engineering package to the owner and began the prefabrication of all required piping and components to install the system.

The vessel went into a Dutch drydock during the second week of January and Goltens delivered the prefabricated piping to the shipyard. Installation work was completed under Goltens’ supervision – with the project status reported to the vessel superintendent daily, and progress and actions discussed with the relevant parties during morning meetings to keep the project on track.

WRAPPED IN A MONTH

Due to the large scope of the scheduled drydocking, working efficiently with all parties involved was a challenge. However, the project was completed on schedule and did not result in any delays in the vessel’s departure from the yard. The total piping and electrical installation project, including commissioning, took four weeks to complete.

Optimarin OBS 500 m³/hr Ballast treatment system:

- Model: 12V46
- Vessel type: Advanced Pipe Laying Vessel
- Total ballast capacity: 5 746 m³
- Ballast treatment system: Optimarin OBS 500 m³/hr

The last thing over 2 000 cruise passengers want to be reminded of when vacationing in Royal Caribbean paradise is irritating signs of everyday life. You know, things like delays and repairs. So, when Royal Caribbean contacted Goltens to see whether a crankshaft replacement could come under their pre-cruise without interruptions, Goltens knew there was a race against time.

Royal Caribbean Cruises Ltd. contacted Goltens Singapore after one of its vessels, a 15 000-gallon-per-day main engine suffered a main bearing failure. The cranks found were deeper than the maximum allowed withstand by the engine maker, requiring a replacement of the crankshaft. It was also discovered that during the main bearing failure a lot of heat was transferred to the bearing saddle, causing it to collapse. As a result, the engine maker stated that a new crankshaft was also required to restore the engine back to running condition.

Goltens mobilized one of its most experienced staff engineers to conduct an inspection during a port call in China to evaluate the logistics for the repair and options for commissioning the replacement shaft.

CRITICAL EVALUATION

Goltens performed an on-site inspection, reviewed AutoCAD drawings of the engine room, and overlaid the dimensions of the 9-m/15- ton replacement crankshaft along the potential route. The evaluation showed that there would be just enough space to shift the crankshaft between the forward and aft engine rooms via the watertight door with only a few centimeters of clearance without cutting the door. This evaluation was critical, as the watertight door would need to transfer the 1000 kg-reduced port to eating and the 10-hour port stop in Singapore was not possible.

Complicating matters, the engine room was located 60 meters from the gangway entrance where the replacement crankshaft would be loaded onboard. The gangway is critical to the efficient transfer of provisions and cargo to and from the vessel. Also, the gangway was tested during this operation to ensure that there was enough space to shift the crankshaft to the engine room before the rigging operation commenced.

Due to the large scope of the scheduled drydock, working efficiently with all parties involved was a challenge. However, the project was completed on schedule and did not result in any delays in the vessel’s departure from the yard. The total piping and electrical installation project, including commissioning, took four weeks to complete.

The operation to onload the new crankshaft started from the gangway in Singapore at 0600 hours, and the crankshaft was then required to be mated to the engine and overlaid the dimensions of the 9-meter/15- ton crankshaft into the engine room.

Careful planning and execution allowed for uninterrupted operation onboard Royal Caribbean cruise ship.

The operation to onload the new crankshaft was also required to restore the engine back to running condition.

As the engine could not sail with open holes, Goltens’ welders cut the access hole in the overhead ceiling in the aft engine room before the rigging operation commenced.

The offloading of the condemned crankshaft was also critical, as it could be cut into smaller sections and offloaded more safely without time constraints via the watertight door in Singapore.

The operation to onload the new crankshaft started from the gangway in Singapore at 0600 hours, and the crankshaft was then required to be mated to the engine and overlaid the dimensions of the 9-meter/15- ton crankshaft into the engine room.

Careful planning and execution allowed for uninterrupted operation onboard Royal Caribbean cruise ship.
The engine was ready for operational testing. After alignment was carried out, the Goltens also replaced the original rubber cushion and Goltens technicians. As part of the rebuild had been fully overhauled by the vessel crew the engine was rebuilt. All auxiliary equipment special bearings. This action meant that all main bearings stayed in-SITU Line BORing, inSTALLATON...
Shipyard Services – responding fast and meeting deadlines

When companies think about where Goltens works, stationary power plants, offshore platforms and shipyards come to mind. However, there are many more application areas for the services and expertise provided by Goltens. Therefore, the magnitude and breadth of services provided directly to shipyards and customers during their shipyard periods may come as something of a surprise...

In the shipyards, missed deadlines and deliveries cost owners and yards time and money. Goltens’ continuous focus is on providing an expert and rapid response to help customers solve both known challenges and unforeseen problems on time and on budget. Goltens’ ability to respond and solve challenging technical challenges outside the norm for these very capable yards makes it an indispensable resource. Additionally, close working relationships with yards all over the world often enable customers to engage Goltens directly for specialist services inside the yard when the yard is unable to perform them internally.

Goltens has long-standing relationships with shipyards all over the world – ranging from long-term, informal arrangements to formal joint ventures and resident contractor arrangements. Yards around the globe call Goltens to provide large and small-scale in-ship machining services, laser alignment and chocking, as well as reconditioning of critical parts like stern tubes and other bearings. Goltens directly for services inside the yard when the yard is unable to perform them internally.

When companies think about where Goltens works, stationary power plants, offshore platforms and shipyards come to mind. However, there are many more application areas for the services and expertise provided by Goltens. Therefore, the magnitude and breadth of services provided directly to shipyards and customers during their shipyard periods may come as something of a surprise...

In the shipyards, missed deadlines and deliveries cost owners and yards time and money. Goltens’ continuous focus is on providing an expert and rapid response to help customers solve both known challenges and unforeseen problems on time and on budget. Goltens’ ability to respond and solve challenging technical challenges outside the norm for these very capable yards makes it an indispensable resource. Additionally, close working relationships with yards all over the world often enable customers to engage Goltens directly for specialist services inside the yard when the yard is unable to perform them internally.

Goltens has long-standing relationships with shipyards all over the world – ranging from long-term, informal arrangements to formal joint ventures and resident contractor arrangements. Yards around the globe call Goltens to provide large and small-scale in-ship machining services, laser alignment and chocking, as well as reconditioning of critical parts like stern tubes and other bearings. Goltens directly for services inside the yard when the yard is unable to perform them internally.

When companies think about where Goltens works, stationary power plants, offshore platforms and shipyards come to mind. However, there are many more application areas for the services and expertise provided by Goltens. Therefore, the magnitude and breadth of services provided directly to shipyards and customers during their shipyard periods may come as something of a surprise...

In the shipyards, missed deadlines and deliveries cost owners and yards time and money. Goltens’ continuous focus is on providing an expert and rapid response to help customers solve both known challenges and unforeseen problems on time and on budget. Goltens’ ability to respond and solve challenging technical challenges outside the norm for these very capable yards makes it an indispensable resource. Additionally, close working relationships with yards all over the world often enable customers to engage Goltens directly for specialist services inside the yard when the yard is unable to perform them internally.

Goltens has long-standing relationships with shipyards all over the world – ranging from long-term, informal arrangements to formal joint ventures and resident contractor arrangements. Yards around the globe call Goltens to provide large and small-scale in-ship machining services, laser alignment and chocking, as well as reconditioning of critical parts like stern tubes and other bearings. Goltens directly for services inside the yard when the yard is unable to perform them internally.

When companies think about where Goltens works, stationary power plants, offshore platforms and shipyards come to mind. However, there are many more application areas for the services and expertise provided by Goltens. Therefore, the magnitude and breadth of services provided directly to shipyards and customers during their shipyard periods may come as something of a surprise...

In the shipyards, missed deadlines and deliveries cost owners and yards time and money. Goltens’ continuous focus is on providing an expert and rapid response to help customers solve both known challenges and unforeseen problems on time and on budget. Goltens’ ability to respond and solve challenging technical challenges outside the norm for these very capable yards makes it an indispensable resource. Additionally, close working relationships with yards all over the world often enable customers to engage Goltens directly for specialist services inside the yard when the yard is unable to perform them internally.

Goltens has long-standing relationships with shipyards all over the world – ranging from long-term, informal arrangements to formal joint ventures and resident contractor arrangements. Yards around the globe call Goltens to provide large and small-scale in-ship machining services, laser alignment and chocking, as well as reconditioning of critical parts like stern tubes and other bearings. Goltens directly for services inside the yard when the yard is unable to perform them internally.

When companies think about where Goltens works, stationary power plants, offshore platforms and shipyards come to mind. However, there are many more application areas for the services and expertise provided by Goltens. Therefore, the magnitude and breadth of services provided directly to shipyards and customers during their shipyard periods may come as something of a surprise...

In the shipyards, missed deadlines and deliveries cost owners and yards time and money. Goltens’ continuous focus is on providing an expert and rapid response to help customers solve both known challenges and unforeseen problems on time and on budget. Goltens’ ability to respond and solve challenging technical challenges outside the norm for these very capable yards makes it an indispensable resource. Additionally, close working relationships with yards all over the world often enable customers to engage Goltens directly for specialist services inside the yard when the yard is unable to perform them internally.

Goltens has long-standing relationships with shipyards all over the world – ranging from long-term, informal arrangements to formal joint ventures and resident contractor arrangements. Yards around the globe call Goltens to provide large and small-scale in-ship machining services, laser alignment and chocking, as well as reconditioning of critical parts like stern tubes and other bearings. Goltens directly for services inside the yard when the yard is unable to perform them internally.
Goltens Dubai’s relocation to Dubai Maritime City (DMC) – one of the world’s largest dry docking facilities for offshore service and small cargo vessels – means that the company is now offering its full range of workshop and docking services in a more efficient and responsive manner.

The state-of-the-art, purpose-built facility includes 10,000 square meters of workshops, 1,500 square meters of offices, and around 10,000 square meters of open yard to the rear of the site adjacent to the ship transfer area. Relocation of the business from Al Jadaf to DMC commenced in early March 2013 and was largely completed by the end of April.

**AT THE HEART OF THE DOCKING MARKET**

“It has been a huge task to relocate 80 staff, 280 workers, 14 workshops and several hundred pieces of equipment a few kilometers down the road while trying to maintain business as usual. This is not the sort of thing one does every day so it was a new experience for all of us,” says Goltens Worldwide Services President Paul Friedberg.

“We are delighted with the new facility and the benefits this brings to our business and our customers in the region. It has been enormously satisfying to be given a clean sheet of paper to custom design a facility that greatly enhances our operations and more than meets the needs and desires of our customers going forward. We are now placed at the heart of the docking market in UAE where we can better serve our docking and afloat customers, as well as be closer to Drydocks World – already a major customer and one which we see as key to our future success in the region.”

Goltens has already carried out 60 dockings in DMC, and is looking to increase docking activity in the new location to augment its already well-established and respected diesel, mechanical, electrical, reconditioning, and in-situ machining capabilities. The new facility also offers state-of-the-art warehousing for its parts and lubricant trading activities, as well as storage and control of customer assets.

**Organizational changes strengthen strategic focus**

**EUROPE AND AMERICAS**

Roy Strand was appointed as Vice President Goltens Europe on 1 August 2012 in addition to his current responsibilities as Vice President Goltens Americas. Strand is also the spearhead for coordination and execution of the Goltens group’s global in-situ machining strategy.

**GOLTENS WORLDWIDE ADVISORY BOARD**

Maarten Jeronimus, Managing Director or Goltens Rotterdam BV, has been appointed by the Board of Directors as a member of Goltens Worldwide Advisory Board which is responsible for charting the formulation and execution of the company’s global strategy.

“We are confident that this reorganized structure will result in an enhanced focus on quality and customer service, improved operational efficiency and continued worldwide growth and business development,” says Paul Friedberg, President Goltens Worldwide Services.